| UNIT 1: METHODS OF SCIENCE AND FORCE EQUILIBRIUM | | | | |--|----------------|---|--| | Big Questions | | | Summative Assessments tive assessments created by teachers/teams | | 1. What are the methods, processes and tools used by scier | | Options may include, but are not | limited to: | | 2. What are the differences and similarities between vectors | s and scalars? | - Measurement Lab | | | 3. What are the conditions for Force Equilibrium? | | - Excel Graphing Activity | | | 4. What is Newton's First Law? | | - Force Equilibrium Lab | | | 5. What is Inertia? | | - Friction Lab | | | 6. What is the difference between mass and weight? | | - Unit Exam | | | Curriculum Benchmark | Standards (| of Proficiency | Resources | | | | sst show to demonstrate proficiency teachers/teams) | | | Curriculum Benchmark | Standards of Proficiency Description of what students must show to demonstrate proficiency (created by teachers/teams) | Resources | |--|--|---| | Describe changes in society that have resulted from significant discoveries and advances in technology in physics. <i>For example:</i> Transistors, generators, radio/television, or microwave ovens. (P. 1.3.3.1) | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | Use significant figures and an understanding of accuracy and precision in scientific measurements to determine and express the uncertainty of a result. (P.1.3.4.1) | | | | UNIT 2: MOTION AND FORCES | | | | |--|---------------------------------|---|---| | Big Questions | | Formative / Summative Assessments Formative and summative assessments created by teachers/teams | | | What is the relationship between Force and Motion? What is the relationship between position, velocity and How can the position and velocity of an object be calculated. What are the differences and similarities between linear | alated from initial conditions? | Options may include, but are not - Domino Lab - Speed Lab - Projectile Lab - Unit Exam | limited to: | | Curriculum Benchmark | Description of what students mu | of Proficiency set show to demonstrate proficiency eachers/teams) | Resources | | Use vectors and free-body diagrams to describe force, position, velocity and acceleration of objects in two-dimensional space. | | | Textbook: <u>Physics: Principles with</u> <u>Applications</u> (6 th Edition) (Pearson Education) | (P.2.2.1.1) (P.2.2.1.2) Apply Newton's three laws of motion to calculate and analyze the effect of forces and momentum on motion. | UNIT 3: MOMENTUM, WORK, ENERGY AND POWER | | | | | |---|--------------------------------|--|---|--| | Big Questions | | | / Summative Assessments ative assessments created by teachers/teams | | | How can Conservation of Momentum be used to predict the velocity of an object following a collision? What are the similarities and differences between Elastic and Inelastic collisions? What is the relationship between Force and Displacement and Work and Power? How can Conservation of Energy be used to predict final conditions? What are the components of Mechanical Energy? How can energy be transformed from one type to another? | | Options may include, but are not - Work &Power Lab - Conservation of Momentus - Rube Goldberg Device - Unit exam | | | | Curriculum Benchmark | Description of what students n | of Proficiency nust show to demonstrate proficiency teachers/teams) | Resources | | | Use conservation of momentum and conservation of energy to analyze an elastic collision of two solid objects in one-dimensional motion. (P.2.2.2.3) | | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | | Use gravitational force to explain the motion of objects near Earth and in the universe. (P.2.2.1.3) | | | | | | Explain and calculate the work, power, potential energy and kinetic energy involved in objects moving under the influence of gravity and other mechanical forces. (P.2.2.2.1) | | | | | | UNIT 4: CIRCULAR MOTION AND ROTATIONAL MOTION | | | | |--|---|--|--| | Big Questions | Formative / Summative Assessments Formative and summative assessments created by teachers/teams | | | | What happens to the motion of an object when the force is perpendicular to the velocity? How can Newton's Law of Gravitation be used to describe the motion of objects in the solar system, galaxy and universe? What is the relationship between angular position, angular velocity and torque? | Options may include, but are not limited to: - Circular Motion Lab - Rotational Motion Lab - Orbits Lab - Unit Exam | | | | 4. What is meant by Time Dilation and Length Contraction? | | | | | Curriculum Benchmark | Standards of Proficiency Description of what students must show to demonstrate proficiency (created by teachers/teams) | Resources | |---|---|---| | Use gravitational force to explain the motion of objects near Earth and in the universe. (P.2.2.1.3) | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | Describe and calculate the change in velocity for objects when forces are applied perpendicular to the direction of motion. <i>For example:</i> Objects in orbit. (P.2.2.2.2) | | | | UNIT 5: PROPERTIES OF MATTER | | | | |--|---|--|--| | Big Questions | Formative / Summative Assessments Formative and summative assessments created by teachers/teams | | | | Why are atoms called the building blocks of matter? How is the density of a substance related to mass and volume? What is Archimedes' Principle? What is meant by Pascal's Principle? How is Bernoulli's Principle applied to fluids? What is the source of Atmospheric pressure? | Options may include, but are not limited to: - Density lab - Archimedes' Lab - Unit Exam | | | | | UNIT 6: HEAT ENERGY AND THERMODYNAMICS | | | | |---------------|--|---|--|--| | Big Questions | | Formative/ Summative Assessments | | | | | | Formative and summative assessments created by teachers/teams | | | | 1. | What is the relationship between Pressure, Temperature and Volume? | Options may include, but are not limited to: | | | | 2. | What properties of a substance are dependent upon temperature? | - Latent Heat Lab | | | | 3. | How does the temperature of a substance change as heat energy is added or removed? | - Specific Heat Lab | | | | 4. | How does the phase of a substance change as heat energy is added or removed? | - Heat Transfer Lab | | | | 5. | What are the methods of heat transfer? | - Unit Exam | | | | 6. | What determines the direction of heat energy flow in a system? | | | | | 7. | How are the Laws of Thermodynamics applied to systems? | | | | | | | | | | | Curriculum Benchmark | Standards of Proficiency | Resources | |--|---|--| | | Description of what students must show to demonstrate proficiency (created by teachers/teams) | | | Describe and calculate the quantity of heat transferred between solids and/or liquids, using specific heat, mass and | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | change in temperature. | | replications (o Edition) (realson Education) | | (P.2.3.4.1) | | | | Explain the role of gravity, pressure and density in the convection of heat by a fluid. (P.2.3.4.2) | | | | Compare the rate at which objects at different temperatures will transfer thermal energy by electromagnetic radiation. | | | | (P.2.3.4.3) | | | | | UNIT 7: VIBRATIONS, WAVES, SOUND AND LIGHT | | | |---------------|--|---|--| | Big Questions | | Formative / Summative Assessments | | | | | Formative and summative assessments created by teachers/teams | | | 1. | What is a simple harmonic oscillator? | Options may include, but are not limited to: | | | 2. | What are the characteristics and properties of waves? | - Pendulum Lab | | | 3. | What is the relationship between velocity, frequency and wavelength of a wave? | - Spring Lab | | | 4. | What is the difference between transverse and longitudinal waves? | - Speed of Sound Lab | | | 5. | How do waves transmit energy from one location to another? | - Mirror Lab | | | 6. | What are the results of interference of waves? | - Lenses Lab | | | 7. | What is the definition of the "Dual Nature of Light"? | - Unit Exam | | | | , and the second se | | | | Curriculum Benchmark | Standards of Proficiency | Resources | |---|---|---| | | Description of what students must show to demonstrate proficiency (created by teachers/teams) | | | Analyze the frequency, period and amplitude of an oscillatory system. <i>For example:</i> An ideal pendulum, a vibrating string, or a vibrating spring-and-mass system. (P.2.3.1.1) | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | Describe how vibration of physical objects sets up transverse and/or longitudinal waves in gases, liquids and solid materials. (P.2.3.1.2) | | | | Explain how interference, resonance, refraction and reflection affect sound waves. (P.2.3.1.3) | | | | Describe the Doppler effect changes that occur in an observed sound as a result of the motion of a source of the sound relative to a receiver. (P.2.3.1.4) | | | | Explain and calculate how the speed of light and its wavelength change when the medium changes. (P.2.3.3.2) | | | | Explain the refraction and/or total internal reflection of light in transparent media, such as lenses and optical fibers. (P.2.3.3.3) | | | | UNIT 7: VIBRATIONS, WAVES, SOUND AND LIGHT (continued) | | | | |---|--|---|--| | Curriculum Benchmark | Standards of Proficiency Description of what students must show to demonstrate proficiency (created by teachers/teams) | Resources | | | Use properties of light, including reflection, refraction, interference, Doppler effect and the photoelectric effect, to explain phenomena and describe applications. (P.2.3.3.4) | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | | Compare the wave model and particle model in explaining properties of light. (P.2.3.3.5) | | | | | Compare the wavelength, frequency and energy of waves in different regions of the electromagnetic spectrum and describe their applications. (P.2.3.3.6) | | | | | | UNIT 8: ELECTRICITY AND MAGNETISM | | | | |---------------|--|---|--|--| | Big Questions | | Formative/ Summative Assessments | | | | | | Formative and summative assessments created by teachers/teams | | | | | 1. What is the difference between an electrical insulator and an electrical conductor? | Options may include, but are not limited to: | | | | | 2. What is the relationship between voltage, current and resistance? | - Resistors Lab | | | | | 3. What is the difference between a series circuit and a parallel circuit? | - Ohm's Law Lab | | | | | 4. How are the electrical energy and electrical power related? | - Unit Exam | | | | | 5. What are the differences and similarities between an electric field and a magnetic field? | | | | | | 6. What effect does a magnetic field have on a moving charge? | | | | | | 7. What effect does a changing magnetic field have on a conductor? | | | | | | | | | | | Curriculum Benchmark | Standards of Proficiency Description of what students must show to demonstrate proficiency (created by teachers/teams) | Resources | |--|---|---| | Explain why currents flow when free charges are placed in an electric field, and how that forms the basis for electric circuits. (P.2.3.2.1) | | Textbook: Physics: Principles with Applications (6th Edition) (Pearson Education) | | Explain and calculate the relationship of current, voltage, resistance and power in series and parallel circuits. <i>For example:</i> Determine the voltage between two points in a series circuit with two resistors. (P.2.3.2.2) | | | | Describe how moving electric charges produce magnetic forces and moving magnets produce electric forces. (P.2.3.2.3) | | | | Use the interplay of electric and magnetic forces to explain how motors, generators, and transformers work. (P.2.3.2.40) | | | | Describe the nature of the magnetic and electric fields in a propagating electromagnetic wave. (P.2.3.3.1) | | |