Grades K-12 Science Tutorials

Grades K-12 Science Tutorials

Northfield Public Schools

- Building Blocks for K-12 Science Teachers
- Minnesota Science Standards Overview
- Science MCA-III Test Question Design (by grade level)
- What is the Difference Between Science and Engineering?
- Scientific Inquiry Process
- Engineering Process
- The Deep Dive Guidelines for Group Innovation
- Backward Design Process
- A Balanced and Coherent System of Assessment
- Optimal Learning Model

Building Blocks for K-12 Science Teachers

Northfield Public Schools

MISSION: Why we exist

It is the mission of the K-12 Science Department to foster life-long learning of science and engineering principles and equip our students to succeed in a highly-competitive global environment.

VISION: What we hope to become

We envision a K-12 Science Department in which teachers:

- Are well-versed in the standards and benchmarks assigned to their course/grade level.
- Work collaboratively and support each other.
- Deliver a guaranteed and viable curriculum in each course/grade level that provides all students with access to the same knowledge and skills regardless of the teacher to whom they are assigned.
- Stimulate creative problem solving and logical thinking.
- Inspire passion for scientific thinking.
- Monitor the learning of each student on a timely basis.

COLLECTIVE COMMITMENTS: How we will behave to achieve our vision

To achieve our vision, we will:

- Commit to teaching the standards and benchmarks assigned to our courses/grade levels.
- Work in PLC teams and grade level teams to learn and plan together.
- Identify and implement essential learnings, pacing schedules, formative and summative assessments, and standards of proficiency.
- Identify and implement best practice strategies.
- Deliver engaging, hands-on, inquiry-based instruction.
- Utilize real-life applications to teach science and engineering concepts.
- Accept various and differing viewpoints.
- Model safe and ethical practice.
- Use formative assessments to promptly identify student needs and make instructional changes accordingly.

MINNESOTA SCIENCE STANDARDS Implemented 2011-2012

Adapted From Minnesota Department of Education

SCIENCE MCA-III TEST QUESTION DESIGN FOR GRADES 3-5

Test Design

The following table provides the approximate number of points by strand on the operational test for each grade. Multiple-choice (MC) items are each worth 1 point, while other item types are worth 1-3 points. Approximately 40-60 percent of the test will be comprised of multiple-choice items, and other item types will make up the remainder of the test.

Grade 5 Science MCA-III (Operational Form)

Strand	Approximate Number of Points	Approximate Percent of Points
Nature of Science and Engineering (NSE)	11-13	28
Physical Science (PS)	9-11	24
Earth and Space Science (ESS)	9-11	24
Life Science (LS)	9-11	24
Total	41	100

Grades 3-5 Points by Substrand

1. Nature of Science and Engineering (11-13)

- 1. The Practice of Science (4-7)
- 2. The Practice of Engineering (2-4)
- 3. Interactions Among Science, Technology, Engineering, Mathematics and Society (3-6)

2. Physical Science (9-11)

- 1. Matter (3-5)
- 2. Motion (1-3)
- 3. Energy (4-6)

3. Earth and Space Science (9-11)

- 1. Earth Structure and Processes (2-4)
- 2. Interdependence within the Earth System (2-4)
- 3. The Universe (1-3)
- 4. Human Interactions with Earth Systems (2-4)

4. Life Science (9-11)

- 1. Structure and Functions in Living Systems (2-4)
- 2. Interdependence Among Living Systems (2-4)
- 3. Evolution in Living Systems (1-3)
- 4. Human Interactions with Living Systems (2-4)

SCIENCE MCA-III TEST QUESTION DESIGN FOR GRADES 6-8

Test Design

The following table provides the approximate number of points by strand on the operational test for each grade. Multiple-choice (MC) items are each worth 1 point, while other item types are worth 1-3 points. Approximately 40-60 percent of the test will be comprised of multiple-choice items, and other item types will make up the remainder of the test.

Grade 8 Science MCA-III (Operational Form)

Strand	Approximate Number of Points	Approximate Percent of Points
Nature of Science and Engineering (NSE)	13-15	28
Physical Science (PS)	11-13	24
Earth and Space Science (ESS)	11-13	24
Life Science (LS)	11-13	24
Total	51	100

Grades 6-8 Points by Substrand

- 1. Nature of Science and Engineering (13-15)
 - 1. The Practice of Science (4-6)
 - 2. The Practice of Engineering (3-5)
 - 3. Interactions Among Science, Technology, Engineering, Mathematics and Society (5-7)
- 2. Physical Science (11-13)
 - 1. Matter (5-7)
 - 2. Motion (3-5)
 - 3. Energy (3-5)
- 3. Earth and Space Science (11-13)
 - 1. Earth Structure and Processes (5-7)
 - 2. Interdependence within the Earth System (3-5)
 - 3. The Universe (2-4)
 - 4. Human Interactions with Earth Systems (1-3)
- 4. Life Science (11-13)
 - 1. Structure and Functions in Living Systems (4-6)
 - 2. Interdependence Among Living Systems (3-5)
 - 3. Evolution in Living Systems (3-5)
 - 4. Human Interactions with Living Systems (1-3)

SCIENCE MCA-III TEST QUESTION DESIGN FOR GRADES 9-12

Test Design

The following table provides the approximate number of points by strand on the operational test for each grade. Multiple-choice (MC) items are each worth 1 point, while other item types are worth 1-3 points. Approximately 40-60 percent of the test will be comprised of multiple-choice items, and other item types will make up the remainder of the test.

Grades 9-12 Science MCA-III (Operational Form)

Strand	Approximate Number of Points	Approximate Percent of Points	
Nature of Science and Engineering (NSE)	24-28	38	
Life Science (LS)	40-44	62	
Total	68	100	

Grades 9-12 Points by Substrand

1. Nature of Science and Engineering (24-28)

- 1. The Practice of Science (8-10)
- 2. The Practice of Engineering (8-10)
- 3. Interactions Among Science, Technology, Engineering, Mathematics and Society (8-10)

4. Life Science (40-44)

- 1. Structure and Functions in Living Systems (9-11)
- 2. Interdependence Among Living Systems (8-10)
- 3. Evolution in Living Systems (11-13)
- 4. Human Interactions with Living Systems (8-10)

WHAT IS THE DIFFERENCE BETWEEN SCIENCE AND ENGINEERING?

Scientists investigate what is; they discover new knowledge by peering into the unknown ...

Engineers create what has not been; they make things that have never existed before ...

Joe Bordogna, National Science Foundation

	SCIENTIFIC INQUIRY	ENGINEERING DESIGN
PROCESS	 Make observations and form questions. Formulate the hypothesis for your experiment. Develop the procedure for your experiment. Conduct your experiment. Refine hypothesis and experiment again. Form a conclusion and communicate it. 	 Identify and define the challenge to be solved. Explore what others have done and what materials are available. Develop a variety of solutions/designs, and then choose one. Create your solution/design. Test your solution/design. Evaluate your solution/design, modify it, and test it again. Use or market your final solution/design.
RESULTS	FactsTheories	ProductsProcesses
GOALS	Gain information and knowledge.Understand and explain the natural world.	 Provide a solution to a challenge or problem. Get someone to use or buy your solution.

The Scientific Inquiry Process

YOU ARE A SCIENTIST.

The Engineering Process

YOU ARE AN ENGINEER.

THE DEEP DIVE

Guidelines for Group Innovation

Have one conversation at a time.

Stay focused on the topic.

Encourage wild ideas.

Defer judgment.

Build on the ideas of others.

BACKWARD DESIGN PROCESS

- What should students know, understand, and be able to do?
- What are the essential learnings that all students must master?

- How will we know if students have achieved the desired results and met the standards?
- What will we accept as evidence of student understanding and proficiency?
- How will students *show* us what they *know*?
- What variety of formative and summative assessments will we use to measure student learning?
- What knowledge and skills will students need to achieve desired results?
- What activities will equip students with the needed knowledge and skills?
- What will need to be taught and coached, and how should it best be taught?
- What materials and resources are best suited to accomplish these goals?

A Balanced and Coherent System of Assessment

© Kildeer Countryside Community Consolidated School District 96.

Do not duplicate.

Ongoing Student and Teacher Formative Assessments

> Diagnostic and Prescriptive

Collaboratively Developed Common Formative Assessments

Identify Students Eligible for Support in a Pyramid of Interventions Collaboratively Developed District Benchmark Assessments

> Calibrate and Pace the Curriculum

Identify Students Eligible for Ongoing Remedial and Programmatic Support Annual State Mandated Summative Assessments

Ranks and Benchmarks Enfrance and Exit Criteria

© Dr. Thomas W. Many, Kildeer Countryside CCSD 96 May not be reprinted without written permission

	Classroom Assessments	Common Assessments	District Level Assessments	External Assessments
Locus of Control	Classroom	School	District	State and National
Summative/Formative	Most Formative	More Formative	More Summative	Most Summative
Frequency	Daily (frequent, ongoing)	Quarterly (at minimum)	Periodic (pre and post)	Annual (or longer)
Description of Data	Individualizes Student Data	Standards Based Data	Benchmark Data	Autopsy Data
Highlights	Mastery of strategies and skills	Levels of Proficiency	Groups of At-risk students	Programmatic Strengths and Weaknesses
Products	Descriptive Feedback	Diagnostic Feedback	Entrance and Exit Criteria	Rank order
Outcome	Reteaching and regrouping	Systematic Interventions	Program Support	Accountability

© 2007 Solution Tree, www.solution-tree.com REPRODUCIBLE

OPTIMAL LEARNING MODEL ACROSS THE CURRICULUM

Below is a teaching and learning model that can serve as a reminder of how to plan lessons and units that will move students from dependent learners to independent learners.

DEPENDENT LEARNER

INDEPENDENT LEARNER

To Learners	With Learners			By Learners
	Shared		Guided	Independent
Demonstration	Demonstration		Practice	Practice
TEACHER	TEACHER		STUDENT	STUDENT
InitiatesModelsExplainsThinks aloudShows how to "do it"	 Demonstrates Leads Negotiates Suggests Supports Explains Responds 	of Responsibility	 Applies learning Takes charge Practices Problem solves Approximates Self-corrects 	 Initiates Self-monitors Self-directs Applies learning Problem solves Confirms Self-evaluates
STUDENT	• Acknowledges STUDENT	Over of	TEACHER	TEACHER
• Listens	• Listens	Ó	Scaffolds	• Affirms
ObservesMay participate on a limited basis	InteractsCollaboratesRespondsApproximatesParticipates as best he can	Hand (ValidatesTeaches as necessaryEvaluatesObservesEncouragesClarifies	Assists as neededRespondsAcknowledgesEvaluatesSets goals

Adapted from "Reading Essentials" by Regie Routman (Heinemann: Portsmouth, NH); @2003